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1 Introduction

The rapid development of multimedia information technologies has markedly fostered research

on Content-Based Image Retrieval Systems (CBIRS). In what follows, “Content” refers to picto-

rial attributes that can be extracted by image analysis methods. CBIRS allow exploratory “data

mining” in large pictorial databases: search and retrieval of images whose attributes satisfy spe-

cific criteria (e.g. Gudivada and Raghavan, 1995). Typical image attributes are the dominant col-

ors of the images (e.g. Gong and Sakauchi, 1995), their textural components (e.g. Pentlandet al,

1994), or the shape of the objects contained in the pictures (e.g. Kato, 1992, Flickneret al, 1995).

CBIRS should offer tools for the construction and precompilation of anindex to the pictorial

database, for theindexing (search) andretrieval operations to answer specific queries, for the

browsing and selection amongst answers, and for therefinement of the search. Human interaction

in such operations is fundamental: for classifying the images in order to structure the database,

for selecting the most descriptive image attributes, for formulating and refining queries, and for

browsing amongst responses to these queries. Simple approaches to the above problems are

reaching their limits in terms of descriptive power, retrieval accuracy, and ability to cope with

large datasets. There is need for more sophisticated methods based, for example, on computer

vision techniques (e.g. Gudivada and Raghavan, 1995; Pun and Milanese, 1995). In this context,

exploratory statistics offer alternative approaches, well suited to the handling of large datasets as

well as to human interaction.

We concentrate here on the index creation phase. Given a training set composed of a very large

number of images, the problem is to obtain a hierarchical index whose nodes point towards the

various image classes, whose links express inclusion relationships, and whose leaves are the indi-

vidual images. This index will also be used as a decision tree for retrieving images from the data-

base. This is basically a learning problem for which families of solutions exist in computer vision

and other domains (e.g. Diday and Lechevallier, 1991; Chenet al, 1993; Bhanu and Poggio,

1994). In the present case, the training set will be composed of a large collection of images, of

various types. It seems therefore unrealistic to base the index creation on any sophisticated struc-

tural object recognition procedure, likely to fail in the absence of more precise assumptions.

Also, it is known to be difficult to extract hierarchically-structured classes using connectionist

methods, and that explanations for classifications in terms of the original feature set are similarly

difficult to obtain.
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We argue here that exploratory statistics (e.g. Jambu 1991) provide paradigms and methods that

can greatly ease the major operations involved in CBIRS. Methods from exploratory statistics

allow the dimensionality of the classification problem to be reduced, permitting hierarchical

structuring of large datasets. In addition, these methods provide a list of pertinent image features

and attributes that led to the classification obtained. Due to the nature of the data (images of

unconstrained content) and to the constraint of designing CBIRS with acceptable response times,

features and attributes used here are global (e.g. luminance and chrominance, edge statistics, sta-

tistics on regions, etc.) rather than local or structural.

2 Exploratory statistics

2.1 Overview

Exploratory statistics (e.g. Jambu 1991) offers a collection of methods aimed at better under-

standing of large datasets, i.e. at explaining the underlying structure of the dataset. We describe

belowcorrespondence analysis (Benzécri 1973) for helping “explore and explain” the database,

andascendant hierarchical classification(e.g. Lebartet al, 1979) for providing a classification.

Correspondence analysis (CA) belongs to the family of factor analysis methods; as such, it pro-

vides a synthetic representation in a low dimensionfactor space of large sets of numerical data.

These data constitute a cloud of points in a feature space. Factor analysis methods rely on finding

a new, ordered, orthogonal set of axes, thefactor axes, so that the sum of the norms of the projec-

tions of the data onto the axes are maximized, for each axis in turn.

Perhaps the best-known factor analysis method is Principal Component Analysis (PCA). The

term PCA is frequently used without fully-defining the method by which the coordinates of the

points in the original cloud were determined. In fact, the specification of these coordinates, and

thus the metric used for calculating the distance between data points, is crucial in determining

just what sort of factor analysis is performed. PCA is often performed using the covariance of the

mean-centered data as the metric. The analysis thus provides factors that characterize the

variance of the original data. If the raw data for each feature is also normalized by its empirical

standard deviation as well as being mean-centered, then thecorrelation between data points

becomes the metric for the factor analysis.

In CA, the coordinates of the data points are defined so that the usual Euclidean metric in the
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original feature space corresponds to the distance between the points, and thus the analysis is

in terms of theindependence of the data. It will be seen below that CA offers other advantages

also. It is often useful to adopt the terminology of PCA, and to describe factor axes as explaining

a certain percentage of the variance of the original cloud of points. Here this should be under-

stood to refer to the distribution of the points according to the metric, rather than the cova-

riance of the raw data as used by PCA.

CA has as starting point a numerical data table ; in our case, rows correspond to images

, columns to attributes  with usually , and cells to the measure

 of a given attribute for a particular image. A specificity of CA with respect to other factor

analysis methods is that rows and columns play a similar role. An “object” can be either one of

the  images (rows) described each by  values, or one of the  attributes (columns)

described each by  values. As with any factor analysis method, CA allows one to project in the

factor space of dimension  the  image “objects”; in addition, CA permits the

simultaneous representation in the same factor space of the  attribute “objects”. This projec-

tion into a common space allows one to determine which particular attribute is near a cluster of

images, and thus to know which are the important parameters for a given class of images. In

other words, this method not only provides classes, but also explains why these classes are

obtained. CA is commonly used in data analysis, but not as frequently in image analysis (for an

example of application of CA to biomedical image analysis, see Punet al, 1988). CA can be per-

formed on a representative subset of the image dataset, which plays the role of atraining set.

Other images in the dataset, or new images, can then be classified on the basis of the factors

derived from the training set. As with any such technique, there is a trade-off between the com-

putational cost of analyzing a large training set, and the reliability of the subsequent classifica-

tion of new data.

Ascendant hierarchical classification (AHC) is a computationally simple method amongst the

large family of clustering algorithms (e.g. Didayet al, 1981). After projecting the images into

factor space, AHC allows iterative clustering of images that are the closest in this space. This

process yields a binary decision tree reflecting the hierarchy of similarities between images from

the training set. It is presented here because of its hierarchical nature, and its simplicity. Any

other unsupervised clustering technique could be applied to the data in factor space.

χ2
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2.2 Correspondence analysis

Correspondence analysis involves the following sequence of steps: (1) computation of a normal-

ized observation table  from the original data table ; (2) determination of its  matrix

; (3) computation of eigenvalues and eigenvectors of , the latter defining the factor

space; (4) representation of images and attributes in this space. The corresponding equations fol-

low (e.g. Lebartet al, 1979).

The sum  of all elements in  is denoted . The marginal sums (vec-

tors) are obtained by  and . Each element  of the nor-

malized table is determined by:

. (1)

The factor space in which images and attributes are projected is spawned by the eigenvectors of

the  matrix , of rank . Each element of  is given

by:1

(2)

The number of eigenvalues and eigenvectors of  is , i.e.  in what follows

since we assume . Eigenvalues are denoted , with ; the corresponding

eigenvectors of dimension  are , denoting the coordinates. The largest eigenvalue is triv-

ial ( ). The following ratio indicates the percentage of the total variance of the system

that is explained by each factor :

. (3)

In the factor space, the scalar coordinate of image  along factor axis  is:

. (4)

1.  This is actually a simplified form, rather than the full matrix. This form is less computationally costly, and
takes advantage of the fact that its eigenvalues and eigenvectors are identical to those of the original matrix, except that
the first becomes trivial. See Lebart et al, 1979, for a derivation.
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Similarly, the scalar coordinate of attribute  along factor axis  is:

. (5)

Equation (5) indicates that each attribute can be interpreted as the center of mass of all images,

with proper weighting of their coordinates. Conversely, each image can be interpreted as the cen-

ter of mass of the properly weighted attributes:

. (6)

Equations (5) and (6) establish the correspondence between the projections in factor space of the

images and their attributes. The respective position of images and attributes indicates which

attributes characterize the best a given group of images or, conversely, which images are the most

typical of given attributes. Another useful element of information is provided by the absolute

contribution of image  to one given factor axis  (scalar):

(7)

This value specifies the amount by which each image contributes to axis . Images  with the

highest  are the most significant ones to be taken into account for axis . Similarly, the

absolute contribution of an attribute  to one given factor axis  is:

. (8)

2.3 Ascendant hierarchical classification

The purpose of the ascendant hierarchical classification is to cluster the objects (here in factor

space) into meaningful groups. If the objects are the images, this provides classes of similar

images. In the factor space spawned by the  most significant factors (typically ), the

Euclidean distance between two images is defined by:

. (9)

When using the distance defined by Equation (9), and due to Equation (1), each image can be

implicitly given a “mass” . This ability to define such a simple metric in the parameter
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space allows the clustering to be based on the geometrical proximity of elements in this space.

Ideally, the aggregation criterion should build a binary tree by minimizing the within-class cen-

tered second moment while maximizing the between class moment. After the grouping of two

images  and  or more generally, of two groups of images  and , the added within-class

moment is:

, (10)

with

, (11)

and where the cluster index  numbers the nodes of the binary tree.

for , since the leaves of the tree are the individual images; otherwise  for

.

A suboptimal algorithm for building the classification tree, which guarantees minimum within-

class moments, consists of: (1) initializing the symmetric array  of size  with the

intra-class variances of all possible pairs of images { , } (Equation (9)); (2) finding

the entries  for which  is minimum, and aggregating the corresponding two gels

or group of gels; (3) computing ; (4) recomputing the array , whose rank has

diminished by 1; (5) going to (2). The resulting binary tree indicates which images are to be clus-

tered in order to obtain a meaningful hierarchy.

3 Results and discussion

3.1 Images, features and attributes

Our image database currently contains several thousand B/W and color pictures (news photo-

graphs, objects, textures, biological specimen, etc.). Color is obviously a fundamental cue in dis-

criminating images. However, for brevity, we concentrate below on the analysis of 54 grey-scale

images from our database. The images are unconstrained as to their content (see Figure 5). The

choice of representative features and attributes is conditioned by various factors, including their

ease of computation as well as their statistical independence. The most basic feature used here is

the image intensity. We have also retained simple geometric features, namelyline segments and
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circular arcs approximating the image contours, as well asregions obtained through a classical

region growing process. Details regarding the algorithms we used for features extraction can be

found in e.g. Milaneseet al, 1994; these details do not matter much in the following analysis.

The above features lead to the following  attributes:

• average  (attribute1) and standard deviation  (attribute2) of the intensity;

• average  (attribute3) and standard deviation  (4) of the segment lengths;

• average  (attribute5) and standard deviation  (6) of the segment orientations;

• average  (attribute7) and standard deviation  (8) of the circular arc lengths;

• average  (attribute9) and standard deviation  (10) of the circular arc radii;

• average  (attribute11) of the standard deviation of the region intensities (global mea-

sure of the homogeneity of the regions);

• standard deviation  (attribute 12) of the averages of the region intensities (global

measure of the image homogeneity).

This choice of attributes provide translational, rotational and scale invariance in terms of the fac-

tor coordinates. Note that for color images, we replace attributes 1 and 2 by six attributes, namely

the mean and standard-deviations of the R, G, B channels. It is difficult to a-priori select good

representative features for a large image database. Our selection of attributes certainly involves a

degree of arbitrariness, and could be straightforwardly modified. In fact, attribute 5 was found to

be unsuitable, and was excluded from the following analysis. The purpose here, however, is not

to propose the best possible choice. Our goal is rather to show and stress the role of exploratory

methods to assess the pertinence and role of each feature and attribute from a given image set,

and therefore to ease their selection.

3.2 Correspondence analysis

The first step when applying CA to a dataset is to determine the number of factors to be taken

into account. Eigenvalues are used to this effect: each of them quantifies the amount of the total

variance of the system explained by each corresponding factor (Equation (3)). In our case, the

percentage explained by the 10 non-trivial eigenvalues is for : 42.3%, : 24.7%, : 14.7%,

: 8.9%, : 6.4%, : 1.4%,  to : 1.5%. The first four factors therefore explain 90.6%

of the total variance, and should be sufficient to analyze the influence of the various factors.

M 12=

µG σG

µSL σSL

µSO σSO

µAL σAL

µAR σAR

µReg

σReg

λ2 λ3 λ4

λ5 λ6 λ7 λ8 λ11
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The data (images, attributes) can be projected into the factor space spawned by any pair of eigen-

vectors. The most significant are eigenvectors  and , respectively called first and second

factor axis. The result is given in Figure 1. A first inspection readily shows the existence of dis-

tinct image clusters (e.g. cluster of images nr. 13, 23, 35, 38), of isolated elements (e.g. image 5),

and of large clouds. Similarly, some attributes appear significant (e.g. attributes 1, 2, 4) while

others seem correlated (e.g. attributes 6, 7, 8, 10). The correlation of these features is unsurpris-

ing, as , ,  and  are are related to the distribution of curved features (arcs) in

the images. The segment orientation will have a larger variance in the presence of curved fea-

tures, and it is not surprising that the variances in arc length and arc radius are correlated.

INSERT Figure 1.

Equation (7) allows one to rank images according to their contribution to each factor axis. For the

first factor axis  (  = 42.3%), the most important images by decreasing order of influence are

nr. 32(absolute contribution 9.39%), 47 (8.22%), 46 (7.60%), 45 (7.12%), 12 (4.64%), 42

(4.32%). These images are shown in Figure 2. For the second factor axis  (  = 24.7%), the

most important images are nr. 5 (11.35%), 13 (6.88%), 23 (6.38%), 48 (6.18%), 10 (5.86%), 32

(4.29%) (Figure 3).

INSERT Figure 2.

INSERT Figure 3.

In order to better understand the causes behind this distribution of images in factor space, it is

necessary to know which are the attributes that contribute the most to each factor axis. Similarly

to the case of images, Equation (8) allows attributes to be ranked according to their absolute con-

tribution to each axis. For the first factor axis, the most important attributes by decreasing order

of influence are nr. 1 =  (absolute contribution 56.24%), 12 =  (12.19%), 4 =

(8.21%) and 2 =  (7.33%); these four attributes explain 83.97% of the axis. The dominant

attribute in explaining the first factor axis is the average grey value of the image. This is apparent

when looking at the images shown in Figure 2: of the images with the largest contributions, those

with negative factor coordinates are very dark, while those with positive coordinates are light.

The second and third most important attributes,  and , both characterize image homo-

geneity. This is again verified by examining the images: e.g. images 12 and 42 show greater vari-

e2 e3

σSO µAL σAL σAR

e2 λ2

e3 λ3

µG σReg σSL

σG

σReg σSL
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ation in region intensities and segment lengths compared to 32, 47, 46 or 45. Finally, looking at

the factor plane shown in Figure 1, one observes that images 45, 46, 47 and 32 are clustered

together on one side of the factor plane, while images 12 and 42 are on the other. The distances in

factor space between these images correspond well to the subjective differences between them.

Regarding the second factor axis, the most important attributes are nr. 2 =  (41.21%), 9 =

 (19.57%), 10 =  (12.02%) and 3 =  (8.03%); these four attributes explain 80.84%

of the axis. The dominant attribute is the standard-deviation of the image intensity. This is con-

firmed by looking at Figure 3: images 10 and 48, with positive factor coordinates, are highly con-

trasted, with a clearly bimodal intensity histogram. Their variances are much larger than those of

images 5, 13, 23 and 32, whose contrasts are low. The second and third most important attributes

are the average and standard-deviation of the radii of the circular arcs approximating the image

contours. In addition to this difference in terms of variance, images 10 and 48 show an evident

difference in structural complexity compared to 5, 13, 23 and 32. These differing characteristics

account for the clearly separated positions of these images in the factor plane.

Examination of Figure 1 provides additional insights regarding the choice of primitives and

attributes. For example, attributes 6, 7, 8 and 10 (respectively , ,  and ) are very

close in the space spawned by the first two factors. If one decides to use only these factors for all

subsequent analysis, several of these attributes could be dropped. In this way it is possible to

select the features that really need evaluation, hence diminishing computational cost. As an addi-

tional example, it is interesting to observe that attributes 2 and 12 (  and ), that one could

have expected to yield very similar results, are actually quite separated in factor space.

An advantage of correspondence analysis with respect to other factor analysis methods, is that

the geometrical proximity of both images and attributes in thesame factor plane can be exploited

to aid in the interpretation (Equations (5) and (6)). This is exemplified by looking in Figure 1 at

the proximity of attribute 2, and images 10 and 48 (top of figure). Correspondence analysis

allows one to infer from this observation that images 10 and 48 are very representative of

attribute 2, or, conversely, that attribute 2 is a key factor in positioning images 10 and 48 in factor

plane. With other factor methods, the analysis must be accomplished separately for the rows or

columns of .

σG

µAR σAR µSL

σSO µAL σAl σAR

σG σReg

gij[ ]
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3.3 Ascendant hierarchical classification

AHC, as defined in §2.3, is a sub-optimal algorithm for aggregating images in factor space.

Therefore, the hierarchy of classes obtained solely depends on the choice of primitives and

attributes. Despite however the simplicity of the attributes used here, the following experiment

shows that meaningful classes can be obtained. Prior to applying the AHC algorithm, it is neces-

sary to select the number of factors that will be used in Equations (9), (10) and (11). Unlike the

factor space analysis where at most three factors can begraphically depicted, no such limit

applies here. It would therefore be interesting to compare results obtained with several values of

. For the sake of brevity, we concentrate here on results obtained with the four most important

factors ( ), explaining 90.6% of the total variance. The binary tree obtained by AHC is

shown in Figure 4. A brief analysis of the results obtained for other values of  will also be

given.

INSERT Figure 4.

The results of the clustering are presented in Figure 5, where the 8 classes (32, 74, 5, 97, 99, 96,

54, and 103) corresponding to the level 3 (where the root node is level 0) of the tree are shown.

These classes are ordered vertically by their coordinate on the first factor axis. Since these classes

have widely varying intra-class variance, they contain differing numbers of images. For the two

large classes, the images have been grouped to indicate how these classes are split further down

the tree. Class 99 is split into classes 81 and 91 at level 4, and class 103 is split into classes 93,

95, 80 and 89 at level 5.

INSERT Figure 5.

The analysis of the contributions presented above indicated that average grey level and variance

were the most significant attributes for the first and second factor respectively. This is confirmed

by Figure 5, were the influence of the grey scale distribution plays a role. As one moves across

the tree (down Figure 5) from class 32 to class 103, it is apparent that the images become lighter.

The classes in the “middle” (99, 96, 54 and 93) contain images with high contrast, suggesting

that the second factor axis was significant in determining these classes. The classes at the

extremes of the first factor axis (32, 74, 80 and 89) are composed of pictures with narrower inten-

sity distribution. Geometrical features also play an important role in the classification (e.g.,

L

L

L 4=

L

σReg
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,  and ). Classes 32, 74, 5, and 97 contain simple objects with large scale features,

whereas classes 80 and 89 contain objects with fine detail and small features. In fact there is a

trend from large scale to small scale features as one moves across the tree.

Some classes contain a mixture of objects without a clearsubjective relationship (e.g. classes 93,

95); this is to be expected, not only since the attributes used are global, but also due to the fact

that only the first four factors are used. Other classes, however, do establish subjectively mean-

ingful relationships between pictures: class 74 contains only paperclips; class 99 interior scenes;

class 91 contains all the stamps in the dataset; class 96 contains all the playing cards; classes 80

and 89 (children of class 98) contain mainly biological images.

3.3.1 Stability

The analysis described above was repeated using only the first two factor axes ( ), and also

considering all the factors ( ). There is insufficient space in this letter to present a detailed

analysis. When two factors were used classes at level three identical to classes 32, 74, 5 and 97 in

Figure 5 were obtained. Images 49 and 50 were classified with those in class 96, and there were

minor differences in the splitting of class 103. When all the factors were considered, the results

were almost identical to those in Figure 5: class 74 remained unchanged, as did classes 99 and

103. Image 52 was moved to class 96, and image 5 to class 97. there were again minor differ-

ences in the splitting of class 103. These results indicate that CA provides factors that are robust

to the clustering system. Computational savings can thus be made by using a reduced number of

factors, with confidence that the classes obtained will not be radically altered.

The analysis was also carried out with features 6, 7 and 8 suppressed, as suggested by their prox-

imity in factor space, discussed above. In this case, the classes obtained were identical to those in

Figure 5, except that images 27, 28 and 41 were moved from class 96 to class 91. This is a con-

vincing demonstration of the usefulness of the joint representation of images and features in the

same graphical factor space representation provided by CA: these features were selected for

exclusion after a quick perusal of Figure 1, rather than analysis of large tables of numbers. It also

indicates the stability of the technique when number of features is reduced on the basis of depen-

dence.

σSL µAR σAR

L 2=

L 10=
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3.3.2 Subjectivity

It is important to note that any judgement on the “goodness” of this clustering is inherently sub-

jective. Whether or not images are considered to be similar depends on the perceptions of the

user of the system, and also on the task for which the system is to be used. A given user may be

disappointed with a classification, such as the one presented here, in which intensity plays an

important role, since they may be more interested in morphological features. Another user, per-

haps choosing images for an advertising campaign, might be more interested in the colors, or

“mood”, of an image than in the objects it contains.

Correspondence analysis can not solve this problem. It can, however, indicate to the user clearly

which features are most responsible for the factor axes, allowing the user to exclude them if they

are not desired. Moreover, the facility to project both images and features into the same plane

allows the user to observe, in a simple, graphical manner, which images are correlated with

which features. This might indicate that some images should be excluded from the correspon-

dence analysis stage of the procedure, so that they do not unduly influence the factors, and then

included only at the classification stage.

The subjective nature of the image clustering problem can not be solved independently of the

tastes and needs of the user. This suggests that a fruitful area for future research would be a sys-

tem that interacts with the user, allowing the user to review automatically-obtained classes, and

to move images between classes. Such a system could implement an on-line learning scheme, so

that it adapted to the preferences of its user. This could take the form of adapting the features

used and the number of factors considered, but it could also involve a further transformation,

from the factor space obtained from CA to a “user-space”, in which the metric reflects the past

preferences of the specific user.

4 Conclusion

The purpose of this note is to suggest the use of well-established exploratory statistical methods

for “exploring and explaining” a pictorial database, in the framework of content-based image

retrieval systems. Correspondence analysis provides a drastic data reduction, which permits bet-

ter understanding and explanation of the underlying relationships between the elements compos-

ing a given dataset, and thus an intelligent structuring of the database. In particular, the role of

the diverse image features and attributes can be analyzed; this permits the insignificant ones to be



14

Pun and Squire Statistical structuring of pictorial databases

eliminated. Together with an appropriate clustering method, such as ascendent hierarchical clas-

sification, we show how a method for building hierarchical classifications of large pictorial data-

bases. These techniques have been shown to produce subjectively good clusters, and to be robust

under changes in the number of factors considered. These statistical methods allow the structur-

ing of such databases in a manner more appropriate for indexing and retrieval. Finally, the nature

of exploratory statistics lends them well to an interactive usage; our view is that such methods

should be utilized as tools for organizing image databases as a complement to other more classi-

cal pattern recognition approaches.
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Figure 1: Factor plane spawned by the first and second factor axes. Images are indicated by a dot

(.) and numbered from 1 to 58; circles correspond to images which contribute the most to the fac-

tor axes. Attributes are indicated by a cross (+) surrounded by a grey square; they are numbered

from 1 to 12 (with 5 excluded), corresponding respectively to , , , , , ,

, , , , .

µG σG µSL σSL σSO µAL

σAL µAR σAR µR σR
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Figure 2: The 6 images that contribute the most to the first factor axis, ranked left to right by

decreasing order of their absolute contribution. The plus (+) or minus (-) signs indicate whether

the images had positive or negative coordinates on this axis. Image nr. 32: absolute contribution

9.39%; 47: 8.22%; 46: 7.60%; 45: 7.12%; 12: 4.64%; 42: 4.32%. Image numbers refer to Figure

1.

32 (-) 47 (-) 46 (-) 45 (-) 12 (+) 42 (+)
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Figure 3: The 6 images that contribute the most to the second factor axis, ranked left to right by

decreasing order of their absolute contribution. The plus (+) or minus (-) signs indicate whether

the images had positive or negative coordinates on this axis. Image nr. 5: absolute contribution

11.35%; 13: 6.88%; 23: 6.38%; 48: 6.18%; 10: 5.87%; 32: 4.29%. Image numbers refer to Figure

1.

5 (-) 13 (-) 23 (-) 48 (+) 10 (+) 32 (-)
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Figure 4: The binary classification tree obtained by ascendant hierarchical classification. The

horizontal coordinate corresponds to the image coordinate on the first factor axis (Equation (4)

with ); the vertical coordinate is the logarithm of the added intra-class variance obtained

when creating a new class (Equation (10)).

a 4=
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Figure 5: Classes at level 3. The class numbering refers to Figure 4, the image numbering (in

parenthesis) refers to Figure 1. The vertical ordering of the classes corresponds to their coordina-

tes on the first factor axis.

Class 32:

Class 74:

Class 5:

Class 97:

Class 99: (Class 81)

(Class 91)

Class 96:

Class 54:

Class 103: (Class 93)

(Class 95)

(Class 80)

(Class 89)

32

45 45 47

5

13 23 35 38

9 15

49 50 51 52 53

10 14 26 27 28 29 30 31 41 48

54

6 7 16 17 18 44 58

1 3 4 11 20 21 37 43 57

22 34 55

2 8 12 24 25 36 39 42


