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Abstract

In this paper our goal is to employ human judgments of image similarity to im-
prove the organization of an image database for content-based retrieval. We �rst
derive a statistic, �B for measuring the agreement between two partitionings of an
image set into unlabeled subsets. This measure can be used both to measure the
degree of agreement between pairs of human subjects, and also between human and
machine partitionings of an image set. This provides a rigorous means of selecting
between competing image database organization systems, and assessing how close the
performance of such systems is to that which might be expected from a database
organization done by hand.

We then use the results of experiments in which human subjects are asked to
partition a set of images into unlabeled subsets to de�ne a similarity measure for pairs
of images based on the frequency with which they were judged to be similar. We show
that, when this measure is used to partition an image set using a clustering technique,
the resultant clustering agrees better with those produced by human subjects than
any of the feature space-based techniques investigated. Finally, we investigate the use
of machine learning techniques to discover a mapping from a numerical feature space
to this perceptual similarity space. Such a mapping would allow the ground truth
knowledge abstracted from the human judgments to be generalized to unseen images.

1 Introduction

The explosive growth of the world wide web means that millions of people now access
multimedia documents daily. The use of digital images is also now standard practice
in the preparation of paper documents. The distinguishing characteristic of multimedia
documents is the presence of images, whether static or as components of a video sequence.
There is thus a great need for systems that allow users to create, manage and query image
databases in an e�cient and accurate manner. The attachment of textual labels to images
is inadequate for these purpose, since identical images can be described in completely
di�erent ways, and controlled vocabulary indexing is now considered insu�cient even in
text retrieval systems. Consequently, there is signi�cant interest in content-based image
retrieval systems (CBIRSs).

A CBIRS retrieves images from a database based on their similarity to a query image
or sketch [1, 2]. There are now several commercial CBIRSs available, such as IBM's QBIC
system [3], Excalibur Technology's Visual Retrieval Ware [4], Virage's Visual Information
Retrieval engine [1], as well as systems for searching for images on the world wide web,
such as ImageRover [5]. The emergence of commercial systems does not indicate that the
technology is mature, only that the demand for it is very strong.

Current systems face great di�culties, due to the fact that perceived image similarity

is both subjective and task-dependent. Image database organization, feature selection,
e�cient search and user-modeling remain di�cult problems. In this context, we seek
to enhance human usability of image archival and retrieval systems by integrating new
methods of image database organization, and by using machine learning to incorporate
human similarity judgments in this process. The resultant system should have a better
measure of image similarity than those based solely upon image features.

In order to investigate human perception of image similarity, we have performed ex-
periments to measure the agreement between a number of human partitionings of a set of
images, as well as agreement between machine partitionings and human partitionings. We
have developed a measure of the agreement between two partitionings of a set of images
into unlabeled subsets, based on pair-wise subset membership comparisons. It emerges
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that random partitionings can have signi�cant chance agreement. We have investigated
the statistics of this agreement measure, and shown how a better, chance-corrected, agree-
ment measure can be de�ned. The expected chance agreement can be large, especially for
the small image sets often used to test such systems. It is vital to take this into account.

We found that agreement between humans is signi�cantly better than that expected
by chance, but much less than might have been anticipated. Agreement between hu-
man and machine partitionings is not as great. These results indicate that no single
machine clustering technique can be expected to satisfy all database users. Nevertheless,
our agreement measure can be used to aid the selection of image features and techniques
for dimensionality reduction and clustering.

We then show how a collection of human partitionings of an image set can be used
to de�ne a ground truth similarity measure for each pair of images in this set. The
use of this measure to create a machine partitioning gives better agreement with human
partitionings than any other method tried, and indeed agrees with humans better, on
average, than they do amongst themselves. Finally, we report a preliminary investigation
into the use of machine learning to �nd a mapping between numerical image features and
this similarity function.

2 State of the art

2.1 Features

It is acknowledged that semantic retrieval remains impossible, i.e. no existing system
can retrieve all images of cats, regardless of colour, background and pose, from a large
heterogeneous database. This di�culty can be partially avoided by using only images from
restricted domains, such as industrial trademarks [6, 7] or marine animals [8]. In tackling
the general problem, low-level image features are usually used, and an attempt is made to
capture similarity using some function of these.

The most frequently used feature is colour [5, 7]. Similarity is de�ned as some distance
between image colour distributions, the most common being the colour histogram [1, 9].
Many systems use texture features [10, 11], such as hierarchies of Gabor �lters [12]; the
Wold features [13] used in Photobook [14]; the coarseness, contrast, and directionality
features used in QBIC [3]; others including covariance, correlation and entropy models
[11] and wavelet-based decompositions [15]. The limitation of such global features is that
images may have similar colour or texture statistics, but no semantic similarity, due to
di�ering spatial distributions of these features.

Shape features are also often global (an image is assumed to contain one shape), and are
thus most easily applied to restricted domains. Modal matching, for example, has been
applied to �sh, rabbits and machine tools [16]. Other shape-based approaches include
multi-scale representation of curves [17], histograms of edge directions [7, 18], maxima
of zero-crossing contours of curvature scale space images [8], and matching templates of
shape components [19].

Global descriptors can be augmented by seeking features which retain spatial infor-
mation, such as Daubechies' or Haar wavelet decompositions [2, 20]. Another approach
is to segment the image into regions, from which features are extracted, such as color,
size, location and relationships to other regions. This approach turns the image retrieval
problem into labeled graph matching, which is known to be NP complete.
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2.2 Similarity

CBIRSs aim to return images which, according to human perception, are similar to a query
image. Remarkably, few of these systems consider what similarity means in the context of
human usage. Those that do report that human judgments of similarity noticeably di�er
(e.g. [8]). Typically, images are represented as points in a multidimensional feature space.
A metric de�ned on this space is used to measure dissimilarity between images: images
close to the query, according to this metric, are similar to the query. That human and
machine notions of similarity may be very di�erent is rarely discussed.

It is often implied that given the \right" features (an appropriate colour space [5, 9],
texture features \corresponding to human perception" [13]), proximity in feature space
must correspond to perceptual similarity. There are several reasons to doubt this, the
most fundamental of which is the metric assumption. There is psychophysical evidence
that human similarity judgments do not obey the requirements of a metric: self-identity,
symmetry and the triangle inequality [21].

Some authors have addressed the fact that distance in feature space is not equivalent to
perceptual similarity. For example, self-organizing maps have been used to cluster texture
features according to class labels provided by human judgments of texture similarity [12].
Minka and Picard report a system which learns groupings of similar images from positive
and negative examples provided by users during query sessions [10].

3 Image similarity and agreement between partitionings of

a set

It is di�cult to make an objective assessment of the performance of CBIRSs because image
retrieval researchers lack large sets of images for which the similarity \ground truth" is
known. In contrast, text-based document retrieval researchers frequently use data from
the same large, expert-classi�ed datasets, and quantitative comparisons between document
retrieval systems are made, notably in the TREC conference series.1

In order to investigate human judgments of image similarity, we asked human subjects
to partition a set of colour images with unconstrained content into a number of subsets,
with no prompting or guidance. A method for assessing the agreement between partition-
ings produced by pairs of subjects was developed [22, 23], based on statistical measures of
reliability well-known in medical and psychological research [24, 25].

We also used a variety of machine systems to cluster the same set of images that was
presented to the human subjects. We then computed the agreement between the machine
and the human partitionings. Averaged over all humans, this provides a measure of the
degree of overlap of each machine measure of image similarity with the common human
measure. This measure can be used to rank that machine systems, and thus to chose
between them. The average agreement between pairs of humans gives an indication of the
best performance that could be expected of any machine partitioning.

3.1 The �B statistic

To measure the agreement between two partitionings of an image set, we consider pairs
of images individually (since the subsets are unlabeled). Consider the set of images � =
fI1; : : : ; INg. Two subjects, A and B, independently partition � into M subsets. We

1
Text REtrieval Conference { Further information and proceedings are available at:

\http://trec.nist.gov/".
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will call the resultant sets of subsets of � partitionings of �. These two partitionings are
�A = f�A1 ; : : : ; �AMg and �B = f�B1 ; : : : ; �BMg. For each pair of images Ii and Ij , there
are four possibilities:

((Ii 2 �Ak) ^ (Ij 2 �Ak)) ^ ((Ii 2 �B ) ^ (Ij 2 �B ))

((Ii 2 �Ak) ^ (Ij =2 �Ak)) ^ ((Ii 2 �B ) ^ (Ij =2 �B ))

((Ii 2 �Ak) ^ (Ij 2 �Ak)) ^ ((Ii 2 �B ) ^ (Ij =2 �B ))

((Ii 2 �Ak) ^ (Ij =2 �Ak)) ^ ((Ii 2 �B ) ^ (Ij 2 �B )):

The �rst two equations describe cases in which subjects A and B have agreed that images
Ii and Ij are either similar or dissimilar, and the second two describe cases of disagreement.
We de�ne a binary variable Xij(�A;�B), which is 1 when A and B agree about i and j,
and 0 otherwise. A raw agreement measure can be obtained by counting the number of
cases of agreement. A normalized agreement measure, S, where S = 0 indicates complete
disagreement and S = 1 complete agreement, can then be de�ned as

S(�A;�B) =
2

N(N � 1)

N�1X

i=1

NX

j=i+1

Xij(�A;�B) (1)

This normalized agreement measure has a problem: it fails to take into account chance
agreements, which has been shown to be extremely important [24, 25]. A more appropriate
agreement measure is Cohen's kappa statistic [25]:

�(�A;�B) =
observed agreement � expected chance agreement

1� expected chance agreement

=
S(�A;�B)�E[S(�A;�B)]

1�E[S(�A;�B)]
: (2)

The value of E[S] depends upon subject behaviour. When subsets are labeled, a Bayesian
approach to its estimation is usually adopted. We have shown that assuming that subjects
assign images to subsets with equal probabilities is inadequate, and derived a means of
extending the Bayesian approach to the case of unlabeled subsets. We call the agreement
statistic derived in this way �B ; it ranges from

�E[S(�A;�B)]
1�E[S(�A;�B)]

to 1. In practice, however,
only the positive part of its range is used: we can usually design a system which does
better than chance! Details of its derivation may be found in [22].

3.2 Agreements between and amongst humans and machines

We used �B to measure the agreement between the partitionings of a set of 100 images into
8 subsets by a group of 18 human subjects. The experiments showed that there was great
variation in the partitionings produced by the human subjects, but the agreement between
subjects was always signi�cantly greater than that expected by chance. The average value
�B between all pairs of human subjects was 0.3450. The maximum and minimum values
were 0.6266 and 0.1736 respectively. These numbers might be thought of as a benchmark
for the performance that could be expected from a machine image partitioning system on
this task.

18 varieties of factor-analysis-based image classi�cation systems were applied to the
same set of images. The average agreement between machine and human partitionings was
0.1067, and the extreme values were 0.0250 and 0.2312. Clearly, these machine techniques
failed to capture the common component of human image similarity judgment. We propose
to use machine learning to seek a better result.
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4 Frequency-based similarity

We would like to use the ground-truth data provided by human image partitionings to
improve the performance of machine image partitioning techniques. We thus need a way
of converting the human partitionings into similarity-based distances between pairs of
images, since some distance forms the basis of most clustering techniques used to produce
partitionings of an image set.

4.1 Distance de�nition based on human similarity judgments

We propose a distance based on the frequency with which human subjects judge a pair
of images to be dissimilar. If all subjects place a pair of images in the same subset, the
distance between them is 0. If all subjects place a pair of images in di�erent subsets, the
distance between them is 1. Let the distance between images Ii and Ij be df (Ii; Ij). For

P subjects, let k 2 [1;
�
P
2

�
] index each possible pair of subjects Ak and Bk. Then

df (Ii; Ij) =

P(P2)
k=1 1�Xij(�Ak ;�Bk)�

P
2

� : (3)

A matrix of these distances was calculated for the 100 images partitioned by the 18
users in the experiment described above. It is di�cult to visualize these 4950 distances so
we present an image of the matrix of df (Ii; Ij) values in Figure 1.

Figure 1: Image similarity distances calculated from human partitionings of the image set.

The black diagonal line corresponds to the distance between an image and itself: it is
always zero. Further interpretation is possible. The white lines, with black points at their
intersections, correspond to images of bank-notes, which all subjects placed in a single
class. Consequently, they are maximally dissimilar (white lines) to every thing except
each other (black points).

4.2 Clustering from a distance matrix

Since these distances are not derived from image locations in a feature space, geometric
clustering techniques, such as Ascendant Hierarchical Clustering used in the earlier study
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[22], could not be applied, as one cannot calculate the distances between clusters based
on the coordinates of their centres. Images and clusters simply do not have coordinates.

The Unweighted Pair Group Method [26] was applied to cluster the images based on
the distance matrix. The closest pair of images or clusters is found by exhaustive search,
and these are merged to form a new cluster. There is a number of ways of computing
the distance between this new cluster and the other images or clusters. One could, for
example, take the arithmetic mean of the distances between the merged clusters and the
others. Several techniques were tried, and the best results were obtained using simply the
sum of the distances to the other clusters. Two of the eight clusters from the 3rd level of
the resultant binary tree are shown in Figure 2.

First cluster

Second cluster

Figure 2: Two of the eight clusters from the 3rd level of the binary tree.

These might look like \good" clusters: the �rst could perhaps be labeled \crowd
scenes", and the second possibly \people outdoors". We have seen in our earlier experi-
ments, however, that this kind of subjective assessment of the \goodness" of a partitioning
is dangerous. Humans are extremely good at �nding explanations for why a group of im-
ages belong together. In order to perform a rigorous assessment of the \goodness" of this
clustering, we use our agreement measure, �B . The agreements between this machine
clustering and the 18 human clusters are shown in Table 1.

0.4458 0.3331 0.2837 0.3706 0.4174 0.4121
0.3371 0.4149 0.3246 0.4823 0.4350 0.4056
0.4724 0.4532 0.4686 0.3814 0.4852 0.3800

Table 1: Agreements between the frequency-based similarity clustering and human parti-
tionings calculated using �B .

The average agreement was ��B = 0:4057. Remarkably, this is greater than the average
agreement between the human clusterings (0.3450) used to derive the distance matrix. This
clustering agrees quite well with all the human clusterings. This result indicates that this
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\frequency of dissimilarity"-based distance is a good candidate for the common factor in
human judgments of image similarity. The problem now, is how to use it.

5 Generalizing this distance

If ground truth data, in the form of human partitionings, were available for all the images
in a database, this measure could be used directly. This, however, is unlikely ever to be the
case. We would like to relate this distance measure to numerical image features, so that
a distance could be calculated between images which have never been seen by a human
user. We seek, in e�ect, to learn a mapping from feature space to perceptual similarity
space.

The universal approximation property of neural networks makes them good candidates
for learning such a mapping. We have applied multilayer perceptrons, trained by back-
propagation, to the task. The target output is the similarity between a pair of images, as
determined by Equation 3, when the input consists of numerical features extracted from
the images. The networks are of the form shown in Figure 3.

Figure 3: Form of networks used for mapping image features to image distance.

5.1 Selected networks applied to learning image similarity

As a benchmark, we commenced with a network with no hidden layer: a linear system.
Figure 4 shows the distance matrix output by the network, and the target matrix. It is
clear that the network has failed to capture most of the structure of the target similarity
function.

(a) target (b) network output

Figure 4: Failure of linear system to capture similarity matrix structure.

7



Such a network is only useful if it can be applied to images not used during training.
To assess this aspect of network performance, the frequency-based distances derived from
a second human image clustering experiment were used as a test set during the training
of the networks. The error on the test data diverged: not only did the linear network fail
to �t the training data well, it also failed to generalize.

The average agreement between the clustering based on the output of the linear net-
work and the human clusterings was 0.0707. In earlier experiments, we found that the
average agreement between factor analysis-based clusterings and the human clusterings
was 0.1067, and the extreme values were 0.0250 and 0.2312 [22, 23]. The linear network's
performance is actually not so bad by comparison.

A variety of more complex networks has also been tried. For example, a network with
two hidden layers, each with 16 nodes, had the performance shown in Figure 5.

(a) target (b) network output

Figure 5: Performance of a network with two hidden layers, each with 16 nodes.

Due to the size of the training set, these networks are very slow to train. The results
above were obtained after 5 days of training on a SPARC station 5. Importantly, both
training and test set errors were still decreasing at that stage. The average agreement
between the clustering produced by this network and the human clusterings is 0.1586,
already better than the average of the factor analysis-based techniques, and could be
expected to improve as training continues.

The process of selecting and evaluating various architectures and training strategies is
on-going. Although these results are promising, it seems clear that a better set of features
is required. Since the number of images for which such human similarity judgments can be
obtained will always be relatively small, some form of regularization will also be required,
to prevent the network from over�tting the data. This, and improved learning techniques,
are the immediate future areas of research.
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