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Abstract

In this paper we employ human judgments of image similarity to improve the
organization of an image database. We �rst derive a statistic, �B which measures the
agreement between two partitionings of an image set. �B is used to assess agreement
both amongst and between human and machine partitionings. This provides a rigorous
means of choosing between competing image database organization systems, and of
assessing the performance of such systems with respect to human judgments.

Human partitionings of an image set are used to de�ne an similarity value based
on the frequency with which images are judged to be similar. When this measure is
used to partition an image set using a clustering technique, the resultant partitioning
agrees better with human partitionings than any of the feature-space-based techniques
investigated.

Finally, we investigate the use multilayer perceptrons and a Distance Learning

Network to learn a mapping from feature space to this perceptual similarity space. The
Distance Learning Network is shown to learn a mapping which results in partitionings
in excellent agreement with those produced by human subjects.

1 Introduction

The rapid growth of the world wide web and the use of digital images in the preparation
of paper documents mean that millions of people now access multimedia documents daily.
Multimedia documents contain images, either static or as video frames. There is thus
a need for systems that allow users to create, manage and query image databases in an
e�cient and accurate manner. The attachment of text labels to images is inadequate, since
identical images can be described in di�erent ways, and controlled vocabulary indexing
is now deemed insu�cient even in text retrieval systems. Consequently, there is great
interest in content-based image retrieval systems (CBIRSs).

A CBIRS retrieves images from a database based on their similarity to a query image
or sketch [1, 2]. There are now several commercial CBIRSs available, such as IBM's QBIC
[3] and the Virage system [1]. The emergence of commercial systems does not indicate
that the technology is mature, only that the demand for it is very strong.

Current systems face great di�culties, due to the fact that perceived image similarity
is both subjective and task-dependent. We seek to improve the performance of CBIRSs
by using machine learning to incorporate human similarity judgments in the process of
database organization. Resultant systems should have better measures of image similarity
than those based solely upon image features.

We have performed experiments to measure the agreement between human partition-
ings of an image set, as well as agreement between human and machine partitionings.
We have developed a measure of the agreement between two such partitionings, based
on pair-wise subset membership comparisons. Random partitionings can have signi�cant
chance agreement. We have derived a better, chance-corrected, agreement measure. The
expected chance agreement can be large, especially for the small image sets often used to
test CBIRSs. It is vital to take this into account.

Agreement between humans is signi�cantly better than chance, but much less than
might have been anticipated. Agreement between human and machine partitionings is not
as great. No single similarity measure can be expected to satisfy all users.

We envisage a complete CBIRS architecture which exhibits a gradual transition from
an expert-designed feature space to a user- and task-speci�c \query-interaction space" (See
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Figure 1). In this paper, we are concerned with the third stage: the \shared similarity
space". Although a complete system will develop individual user models, we see a role
for an initial mapping from feature space to a space in which distances reect image
similarities commonly perceived by humans.
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Figure 1: Architecture of proposed complete CBIRS

We show how human partitionings of an image set can be used to de�ne a similarity
value for each pair of images. This value leads to partitionings which agree better with
human partitionings than any other method tried. Finally, we demonstrate a system which
learns a mapping between image features and this similarity space.

2 State of the art

2.1 Features

Semantic retrieval remains impossible; e.g. no existing system can retrieve all images
of cats, regardless of colour, background and pose, from a large heterogeneous database.
This di�culty can be partially avoided by working in restricted domains, such as industrial
trademarks [4] or marine animals [5]. In general, an attempt is made to capture similarity
using some function of a set of low-level image features.

The most frequently used feature is colour [4, 6]. Similarity is de�ned as some distance
between colour distributions, most commonly the colour histogram [1, 7]. Many systems
use texture features, such as hierarchies of Gabor �lters [8], the Wold features [9] used in
Photobook [10], coarseness, contrast, and directionality in QBIC [3], or wavelet-based de-
compositions [11]. Importantly, images may have similar global colour or texture statistics,
but little visual similarity, due to di�ering spatial distributions of these features.

Shape features are also often global (one shape per image), and are thus best applied
to restricted domains. Modal matching has been applied to �sh, rabbits and machine
tools [12]. Other shape-based approaches include multi-scale representation of curves [13],
histograms of edge directions [4, 14] and maxima of zero-crossing contours of curvature
scale space images [5].

Global descriptors can be augmented by features which retain spatial information,
such as Daubechies' or Haar wavelet decompositions [2]. Alternatively, images may be
segmented into regions, from which features are extracted, such as colour, size, location
and relationships to other regions. This approach adds labeled graph matching to the
image retrieval problem.
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2.2 Similarity

CBIRSs aim to return images which, according to human perception, are similar to a query
image. Remarkably, few such systems consider what similarity means in the context of
human usage. Those that do report that human similarity judgments similarity noticeably
di�er (e.g. [5]). Typically, images are represented as points in a multidimensional feature
space. A metric de�ned on this space is used to measure dissimilarity between images:
images close to the query are similar to the query.

It is often implied that given the \right" features (an appropriate colour space [6, 7],
texture features \corresponding to human perception" [9]), proximity in feature space
must correspond to perceptual similarity. There are several reasons to doubt this. Most
fundamentally, there is psychophysical evidence that human similarity judgments do not
obey the requirements of a metric: self-identity, symmetry and the triangle inequality [15].

Some authors have addressed this problem. Self-organizing maps have been used to
cluster texture features according to class labels provided by human judgments [8]. Minka
and Picard report a system which learns groupings of similar images from positive and
negative examples provided by users during query sessions [16, 17]. Their approach is very
similar in spirit to the present work, although the set-based learning methods applied
di�er from the direct mapping from feature space to similarity space presented here. The
approach we discuss avoids the need to recompute groupings whenever a new image is
added to the dataset.

3 Image similarity and agreement between partitionings of

a set

It is di�cult to assess objectively the performance of CBIRSs because image retrieval
researchers lack large sets of images for which the similarity \ground truth" is known.
In contrast, text-based document retrieval researchers frequently use data from the same
large, expert-classi�ed datasets, which permits the quantitative comparison of document
retrieval systems.

In order to investigate human similarity judgments, we asked human subjects to parti-
tion a set of unconstrained colour images into a number of subsets, with no prompting or
guidance. A method for assessing the agreement between partitionings produced by pairs
of subjects was developed [18], based on statistical measures of reliability well-known in
medical and psychological research [19, 20].

We used a variety of machine systems to cluster the same set of images. The agreement
between the machine and the human partitionings was computed. Averaged over all
humans, this provides a measure of the overlap of each machine measure of image similarity
with the common human measure, which can be used to rank competing systems. The
average agreement between pairs of humans gives an indication of the best performance
that could be expected of any machine partitioning.

3.1 The �B statistic

In measuring the agreement between two partitionings of an image set, pairs of images
are considered individually (since the subsets are unlabeled). Consider the set of images
� = fI1; : : : ; INg. Two subjects, A and B, independently partition � into M subsets.
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The resultant partitionings of � are �A = f�A1 ; : : : ; �AM g and �B = f�B1 ; : : : ; �BM g. For
each pair of images Ii and Ij, there are four possibilities:

((Ii 2 �Ak) ^ (Ij 2 �Ak)) ^ ((Ii 2 �B ) ^ (Ij 2 �B ))

((Ii 2 �Ak) ^ (Ij =2 �Ak)) ^ ((Ii 2 �B ) ^ (Ij =2 �B ))

((Ii 2 �Ak) ^ (Ij 2 �Ak)) ^ ((Ii 2 �B ) ^ (Ij =2 �B ))

((Ii 2 �Ak) ^ (Ij =2 �Ak)) ^ ((Ii 2 �B ) ^ (Ij 2 �B )):

In the �rst two cases subjects A and B agree that images Ii and Ij are either similar or
dissimilar, and in the second two they disagree. We de�ne a binary variable Xij(�A;�B),
which is 1 when A and B agree about i and j, and 0 otherwise. A normalized agreement

measure, S, where S = 0 indicates complete disagreement and S = 1 complete agreement,
can then be de�ned as

S(�A;�B) =
2

N(N � 1)

N�1X
i=1

NX
j=i+1

Xij(�A;�B) (1)

This measure has a problem: it fails to correct for chance agreements, which has been
shown to be extremely important [19, 20]. A better agreement measure is Cohen's kappa
statistic [20]:

�(�A;�B) =
observed agreement � expected chance agreement

1� expected chance agreement

=
S(�A;�B)�E[S(�A;�B)]

1�E[S(�A;�B)]
: (2)

E[S] depends on subject behaviour. We have shown that assuming that subjects assign
images to subsets with equal probabilities is inadequate, and derived a means of extending
the usual Bayesian approach to the case of unlabeled subsets [18]. The resultant statistic,

�B , ranges from
�E[S(�A;�B)]
1�E[S(�A;�B)]

to 1. In practice only the positive part of its range is used:
we can usually design a system which does better than chance!

3.2 Agreement between and amongst humans and machines

We used �B to measure the agreement between partitionings of 100 images1 into 8 subsets
by a group of 18 human subjects. There was great variation between the partitionings
produced, but �B was always signi�cantly greater than zero. The average �B between
all pairs of human subjects was 0.3450. The maximum and minimum values were 0.6266
and 0.1736. These numbers might be thought of as a benchmark for the performance that
could be expected from a machine image partitioning system on this task.

18 varieties of factor-analysis-based image classi�cation systems were applied to the
same set of images [18]. The average agreement between machine and human partitionings
was 0.1067. The extreme values were 0.0250 and 0.2312. Clearly, these machine techniques
failed to capture the common component of human image similarity judgment. We propose
to use machine learning to seek a better result.

1Images were selected at random from a set of 500 unconstrained images provided by T�el�evision Suisse
Romande.

4



4 Frequency-based similarity

We want to use the ground-truth data provided by human image partitionings to improve
the performance of machine image set partitioning techniques. We thus need a way of
converting the human partitionings into similarity-based distances between pairs of images,
since some distance forms the basis of most partitioning techniques.

We propose a distance based on the frequency with which human subjects judge a pair
of images to be dissimilar. Let the distance between images Ii and Ij be df (Ii; Ij). For P

subjects, let k 2 [1;
�P
2

�
] index each possible pair of subjects (Ak; Bk).

df (Ii; Ij) =
2

P (P � 1)

P (P�1)=2X
k=1

1�Xij(�Ak ;�Bk): (3)

Since these distances are not derived from locations in a feature space, geometric clus-
tering techniques can not be applied, since distances between clusters based on their centre
coordinates cannot be computed. Images and clusters simply do not have coordinates.

The Unweighted Pair Group Method [21] was applied to cluster the images based on
the distance matrix de�ned by Equation 3. The closest pair of images or clusters is found
by exhaustive search, and these are merged to form a new cluster. There is a number of
ways of computing the distance between this new cluster and the other images or clusters,
such as the arithmetic mean of the distances between the merged clusters and the others.
Several techniques were tried, and the best results, as measured using �B , were obtained
using the sum of the distances to the other clusters. The agreements between this machine
clustering and the 18 human clusters are shown in Table 1.

0.4458 0.3331 0.2837 0.3706 0.4174 0.4121
0.3371 0.4149 0.3246 0.4823 0.4350 0.4056
0.4724 0.4532 0.4686 0.3814 0.4852 0.3800

Table 1: Agreements between the frequency-based similarity clustering and human parti-
tionings.

The average agreement was 0.4057. Remarkably, this is greater than the average
agreement between the human clusterings used to derive the distance matrix. This suggests
that this \frequency of dissimilarity"-based distance is a good candidate for the common
factor in human judgments of image similarity.

5 Generalizing this distance

If ground truth data were available for all images in a database, this measure could be used
directly. This, however, is unlikely. We want to relate this measure to image features, so
that distances can be calculated between images never seen by a user. We seek a mapping
from feature space to perceptual similarity space.

5.1 Multilayer perceptrons

Multilayer perceptrons, trained by backpropagation, were applied to the task. The target
output was the similarity between a pair of images (Equation 3). The input consisted of
colour, segment, arc and region features extracted from the images.
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A variety of networks was tried. The average agreement between the clustering pro-
duced by a network with two 16 node hidden layers and the human clusterings was 0.1586.
In earlier experiments, the average agreement between factor analysis-based clusterings
and the human clusterings was 0.1067 [18]. This is thus an improvement. Increasing the
dimensionality of the network produced little change, suggesting that the features used do
not contain enough information for the desired mapping to be learnt.

5.2 Distance-learning networks

A new class of self-organizing network, the distance-learning network (DLN), has been
developed and applied to this task. Based on the self-organizing feature maps (SOMs)
introduced by Kohonen [22], the DLN di�ers from the standard SOM in several ways.
First, nodes have both input and output vectors. Standard SOMs have only input vectors,
though nets with output vectors have been used previously, e.g. in robot control [23]. These
vectors allow an input map and an output map simultaneously. These maps may have
di�ering dimensionalities, but neighbourhood relationships in both are determined by the
network topology. A manifold of the dimensionality of the network is thus embedded in
both the input and output spaces.

The most signi�cant di�erence between a DLN and a SOM is the learning rules. At
each iteration, two input vectors v1 and v2, are presented. The nodes having the closest
input weights wi to the input vectors, n1 and n2, are found. The wi are updated according
to

w
t+1
i = w

t
i + �

�
e�

d21i
2� (v1 �wt

i) + e�
d22i
2� (v2 �wt

i)

�
; (4)

where t is the timestep, � is a scale factor, dij is the distance between nodes ni and nj in
the network topology and � is a radius of inuence. � and � decrease as a function of t.
This is just the vector sum of two normal SOM update steps, and the behaviour of the
input mapping is exactly that of a SOM.

In the output space only the desired distances between activated nodes are given. If
the distance between the output vectors of nodes ni and nj is greater than that desired,
they attract (+), otherwise, they repel (�). Neighbours are a�ected as above. The update
rule for the output weights oi (attraction) is

o
t+1
i = o

t
i � �

�
e�

d21i
2� (ot2 � oti) + e�

d22i
2� (ot1 � oti)

�
: (5)

The input map learnt reects the frequency distribution and topology of the input
vectors. If the dimensionality of the network is less than that of the input subspace, the
network manifold will \fold itself" into it in a manner analogous to a generalized nonlinear
PCA [23]. The DLN allows a distorted version of this topology to be learnt as the output
of the network.

In a CBIRS using well-chosen features, the topology of feature space should be mean-
ingful, even if absolute distances are not. Metaphorically, if two images are similar, we
would like to drag them closer together in similarity space. If topology is meaningful, they
should drag their neighbours with them. The DLN realizes this goal. The inuence on
neighbours is controlled by �.

Figure 2 shows how a distorted output space can be learnt by a DLN, whilst preserving
a topology determined by the input space. The network, its inputs and its outputs were
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all two-dimensional. Input vectors were distributed uniformly in the unit square. The
target output distance was

p
jv1 � v2j2, except when v1 and v2 fell in a circle of radius

1=
p
8 centred at the origin, where it was halved.

(a) input map (b) output map

Figure 2: Input and output of a DLN. The centroid and orientation of the output map
are arbitrary.

A variety of DLNs of di�erent architectures were applied to the feature ! similarity
mapping task. We report results for 5 three-dimensional networks of 5� 5� 5 nodes, with
16-dimensional input vectors and three-dimensional output vectors, trained with pairs of
images drawn from the set of 100 used by the human subjects. Networks were assessed
using the average agreement between partitionings resulting from clustering based on the
output distances with all human subjects. The results appear in Table 2. We recall that

mean std. dev. % of avg. hum.

Network 1 0.3413 0.0600 98.93
Network 2 0.3205 0.0583 92.90
Network 3 0.3469 0.0627 100.6
Network 4 0.3556 0.0461 103.1
Network 5 0.3300 0.0453 95.65

Table 2: Agreements between clusterings based on DLN similarity clusterings and human
partitionings.

the average intra-human agreement was 0.3450. The fourth column of Table 2 shows
network performance as a percentage of this benchmark value. The DLNs do capture the
common component of human similarity judgments for these images.

Figure 3 shows the input and output maps of Network 5 projected onto the �rst two
dimensions of the input and output spaces. The clusters in the output map are readily
apparent. Another advantage of the frequency-based similarity distance is that clusters
between which there was confusion become neighbours in the DLN output space, since
their members have similarity values less than one with each other. This means that a
nearest-neighbour search should retrieve relevant images even when the radius extends
beyond a given cluster.

It should be noted that the values of image features play no part in this mapping. Only
their topological relationships have a role. The output map is thus a form of topological
look-up table, all though 4950 distances have been encoded (approximately) using only
375 variables.
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(a) input map (b) output map

Figure 3: Input and output maps of Network 5

6 Conclusion

We have proposed a measure of the agreement between two partitionings of an image set.
This measure, �B , has the advantage that it is a point measure. Also, since similarity
judgments about all images in the dataset are obtained, e�ectively, simultaneously during
the partitioning process, obtaining data for calculating �B should be cheaper in user
hours than gathering relevance judgments for a set of queries. This is in contrast to
the precision/recall graphs often used to assess CBIRS performance. We believe that �B
complements the precision/recall approach, particularly for evaluating systems which use
clustering to organize the database for faster search.

We have shown how human partitionings of an image set can be used to de�ne a
frequency-based similarity measure which leads to partitionings in excellent agreement
with those produced by human subjects. We have introduced a new class of self-organizing
network, the Distance-Learning Network. We have demonstrated that DLNs can learn
a mapping from feature space to similarity space using the frequency-based similarity
measure as a target during training. Partitionings of images sets obtained by clustering
in the this learnt similarity space were in excellent agreement with human subjects, the
average being 98.24% of the mean intra-human agreement.
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