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ABSTRACT

This paper describes several methods for improving query
evaluation speed in a content-based image retrieval system
(CBIRS). Response time is an extremely important factor in
determining the usefulness of any interactive system, as has
been demonstrated by human factors studies over the past
thirty years. In particular, response times of less than one
second are often specified as a usability requirement. It is
shown that the use of inverted files facilitates the reduction
of query evaluation time without significantly reducing the
accuracy of the response. The performance of the system
is evaluated using precisionvs. recall graphs, which are an
established evaluation method in information retrieval (IR),
and are beginning to be used by CBIR researchers.

KEYWORDS: content-based image retrieval, search prun-
ing, inverted file, response time

INTRODUCTION

Response times in the interaction between computer systems
and human users are of great importance to user satisfac-
tion. At present, this fact is not widely explicitly addressed in
CBIR: many authors discuss mechanisms for reducing search
time, but few quoteactual times. The goal should be a suit-
able trade-off between response time and the quality of the
results. The classic advice concerning response times is reit-
erated by Nielsen [1]:

� 0.1 second is about the limit for having the user feel that
the system is reacting instantaneously.
� 1.0 second is about the limit for the user’s flow of thought
to stay uninterrupted.
� 10 seconds is about the limit for keeping the user’s atten-
tion focused on the dialogue.

Traditional human factors research has also shown the need
for response times faster than one second [2]. A CBIRS
should attempt to stay below this limit for any query, al-
though in a distributed system, such as a web-based CBIRS,
network bandwidth can be the limiting factor.

In this paper we describe several methods for reducing re-
sponse time, and also for enforcing an upper bound. We
compare the results of these time-limited query evaluations
with those for which there was no search pruning. We use an
image database and queries for which users have provided
relevance judgments, described in [3]. Results are presented
using precisionvs.recall graphs.

OTHER SYSTEMS
Most current CBIRSs represent images as points in a mul-
tidimensional feature space. Image similarity is defined as
the Euclidean or Mahalanobis distance between points in this
vector space. Many authors propose methods for reducing
the time taken to search this space, such as dimensionality re-
duction using Principal Components Analysis (PCA) [4, 5],
clustering [6, 7], or spatial search structures such as KD-trees
[5, 8]. The suitability of PCA as preprocessing for informa-
tion retrieval has been challenged: it can eliminate the “rare”
feature variations which can be very useful for creating a spe-
cific query. The other techniques all limit search by pruning
the number of images for which distances are calculated.

Inverted files
IR researchers, however, have more than 30 years of experi-
ence with the problem of reducing query evaluation time in
text retrieval systems. They have generally taken a different
approach, based on theinverted file(IF) data structure most
commonly used in IR. An IF contains an entry for each fea-
ture consisting of a list of the items which have that feature.
In general, an item has only a small subset of all possible
features: similarity computation is restricted to the subspace
spanned by the features present in the query.

Several IF-based search pruning methods are described in
Witten et al. [9]. The principal difference is that in IF sys-
tems similarities are evaluated feature by feature, rather than
item (document, image) by item. This search may be pruned
in two basic ways:

� do not evaluate all features present in the query
� do not evaluate all features for all possible response docu-
ments
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The choice of which features to evaluate depends on their
importance, typically defined by their weights.

SYSTEM STRUCTURE
Viper employs more than 80000 simple colour and spatial
frequency features, both local and global, extracted at several
scales.1 The intention is to make available to the system low-
level features which correspond (roughly) to those present in
the retina and early visual cortex.

The fundamental difference between traditional computer vi-
sion and image database applications is that there is a human
“in the loop”. Relevance feedback (RF) allows a simple clas-
sifier to be learnt “on the fly”, corresponding to the user’s
information need. Unlike some other CBIRSs, we do not at-
tempt to find the “right features” in advance.

Colour features
Viper uses a palette of 166 colours, derived by quantizing
HSV space into 18 hues, 3 saturations, 3 values and 4 grey
levels. This gives more tolerance to changes in saturation and
value, which is desirable since these channels can be effected
by lighting conditions and viewpoint [10]. Two sets of fea-
tures are extracted from the quantized image. The first is a
colour histogram, with empty bins are discarded. The second
represents colour layout. Each block in the image (the first
being the image itself) is recursively divided into four equal-
sized blocks, at four scales. The occurrence of a block with
a given mode color is treated as a binary feature.

Texture features
Two dimensional Gabor filters (Gabors) have been used to
describe the orientation- and frequency-selective properties
of neurons in the visual cortex [11].Viper employs a bank
of real, circularly symmetric Gabors, at three scales and four
orientations. The resultant bank of 12 filters gives good cov-
erage of the frequency domain, and little overlap between
filters. The mean energy of each filter is quantized into 10
bands, for each of the smallest blocks in the image. A fea-
ture is stored for each filter with energy greater than the low-
est band. Histograms of the mean filter outputs are used to
represent global texture characteristics. Full details may be
found in [3].

Feature weighting and relevance feedback
In an earlier study, the performances of several weighting
schemes for CBIR were investigated, both with and without
RF [12]. This study confirmed the efficacy of RF, and al-
lowed the best-performing weighting method to be selected.
This turned out to be a classic “tf � icf ” weight.2 The weight-
ing function depends on both theterm frequencytf and the
collection frequencycf of a feature, as well as its type (block
or histogram).tf j is the frequency with which featurej ap-
pears in an image.cf j is the frequency with which images

1Visual Information Processing for Enhanced Retrieval:
http://cuiwww.unige.ch/˜viper/

2term frequency� inverse collection frequency

containing featurej occur in the entire image collection. The
motivation for usingtf andcf is very simple: features with
high tf characterize an image well; features with highcf do
not distinguish that image well from others [13].

We consider a queryq containingN imagesi with relevances
Ri 2 [�1; 1]. Features from allN images are merged to form
a “pseudo-image”, with frequencies defined by

tf qj =
1

N

NX
i=1

tf ij �Ri: (1)

We now consider the evaluation ofq for an imagek in the
collection. The term frequency component of the weighting
function is

wtf kqj
=

(
tf qj block

sgn(tf qj) �min
���tf qj �� ; tf kj	 histogram

:

(2)

(The histogram case is a generalized histogram intersection).
The collection frequency component is

wcf kqj
=

(
log

�
cf �1j

�
block

1 histogram
: (3)

The complete weighting function is

wf kqj = wtf kqj
� w2cf kqj : (4)

ANALYSIS OF QUERY EVALUATION TIME
The time taken byViper to compute a response depends on
the particular query or feedback image(s). Individual im-
ages have differing numbers of features (between� 1000
and� 2600 in our database), and the total number of fea-
tures increases (sub-linearly) with the number of query or
feedback images. The evaluation times reported in this paper
were measured on a Sun Ultra 10 with 128 MB of memory
and a 8 GB hard disk. The inverted file is read from the
disk for each query. The other information is in the memory.
The image database consists of 500 images for which rele-
vance judgments from 5 users have been obtained for several
queries. The images are taken from a set of 10000 images
provided by Télévision Suisse Romande.

The time taken to evaluate a feature depends on its collection
frequency: those with highcf have correspondingly long
lists of images for which similarity scores must be updated.
Features are sorted according to their weights before evalu-
ation. The evaluation time for 100 features typically varies
between 0.01 and 0.30s, as shown in Figure 1. Similar distri-
butions were observed for different queries and for different
numbers of query images. It is clear that the evaluation of the
features with high collection frequencies takes much longer.3

3It should be noted that for a single image query, only histogram features
havetf 6= 1.
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Figure 1: Evaluation times for each set of 100 features
for a query image with 4224 features.

Typical response times when all features are evaluated are
0.85s for a single image query with 1667 features and 1.61s
for a three image query with 4224 features. Since these re-
sponse times are much longer than the “feeling of instanta-
neous reaction” goal discussed in the Introduction, the query
evaluation process was analyzed in more detail. The results
appear in Table 1. It is clear that the operation for which there

number of features 1667 4224
creation of pseudo-image 0.01s 0.04s
calculation of normalizer 0.01s 0.03s

feature sorting 0.02s 0.03s
file access & score calculation 0.80s 1.50s
score sorting & normalization 0.01s 0.01s

total 0.85s 1.61s

Table 1: Breakdown of query evaluation times.

is the most scope for improvement is access to the inverted
file and the calculation of the scores for the feature/image
combinations.

METHODS FOR REDUCING QUERY EVALUATION TIME
Methods for reducing query evaluation time fall into two
philosophically different classes. Evaluation can be stopped
at a point where it is known that the topn ranked images can
no longer change, (a “lossless” method), or the decision can
be made to tolerate some (small) changes in image ranking
in the final result (a “lossy” method). When choosing be-
tween these classes, it is important to know whether different
results are necessarily worse results, and if so, to what extent.

Changes of image rank during query evaluation
Figure 2 shows the ranks of the images that are finally ranked
1 to 10 during the evaluation of a query. After 50% of the
features have been evaluated, these images are all ranked in
the top 40 (i.e. 8% of the total database). This already sug-
gests that feature evaluation could be stopped early without
too great a loss of precision.
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Figure 2: Ranks of the final top 10 images during query
evaluation, without sorted features.

If the features are sorted according to their weights (as in Fig-
ure 1), the results are dramatically better, as shown Figure 3.
In this case all 10 images are in the top 8% after less than
25% of features have been evaluated, and indeed all but one
are in the top 20 (i.e.4%) after 50% of the features have been
evaluated. It is clear that early stopping could result in great
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Figure 3: Ranks of the final top 10 images during query
evaluation, with sorted features.

improvements in response time, without dramatic changes in
the final results. It is important to note that the amount of
time saved by early stopping will be much better than linear
in the number of features not evaluated, since it is precisely
those features with high collection frequencies that take the
longest time to evaluate.

LOSSLESS REDUCTION OF QUERY EVALUATION TIME
Both lossy and lossless pruning techniques are based on sort-
ing features according to their weights. In the lossless case,
feature evaluation can be stopped when it is known that the
maximum possible score increase from the remaining un-
evaluated features cannot change the composition of the top
n ranked images (wheren is specified by the user). If the
exact order of the images in the topn is not important, evalu-
ation can cease at this point. Alternatively, calculation of the
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weights of the topn images can be continued (ideally using
an “uninverted” file). The equation giving the point at which
evaluation can be stopped is

sn(j)� sn+1(j) > (J � j) log2
�
cf �1j

�
; (5)

whereJ is the number of features in the query,j indexes
features evaluated andsi(j) is the score of imagei after the
evaluation of featurej.

In our system, this approach is of little practical value, since
this limit is not reached until a large proportion of the features
has been processed. Any time saved by pruning at this point
is offset by the expense of maintaining a sorted scoreboard
and testing for this condition after each feature is evaluated.

LOSSY REDUCTION OF QUERY EVALUATION TIME
As indicated by Figure 1, great gains in query evaluation
speed can be expected if the number of features evaluated is
reduced. First, the number of costly accesses to the inverted
file will be reduced. More importantly, since the features are
sorted according to their weights, the number of images for
which scores must be updated for each feature increases dra-
matically asj increases. A typical distribution of collection
frequencies is shown in Figure 4, which shows an almost ex-
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Figure 4: Feature collection frequencies when features
are sorted by weights.

ponential increase in the collection frequency withj. It is
not monotonic, because the weights according to which the
features are sorted also depend on the document frequency
in the query. It is clear, however, that the final features will
have the greatest contribution to the evaluation time.

Whilst the cut-off point given by Equation 5 is too conserv-
ative, query evaluation time can be greatly reduced if lossy
pruning can be tolerated. We must thus quantify the changes
in system performance introduced by lossy pruning. To mea-
sure the quality of the results we use queries and relevance
judgments from a study reported in [12]. Five users selected
sets of images they regarded as relevant from the database
of 500 images mentioned earlier. These data allow us to
construct precisionvs.recall graphs for the system response

to each query for each user. Averaging over all users and
queries indicates the overall performance of the system.

Figure 5 shows the average precisionvs. recall graphs for a
variety of feature evaluation cut-off points. It can be seen
that stopping evaluation after only the first 20% of features
results in only slightly worse performance than the evalua-
tion of all features. Stopping after the evaluation of 80% or
90% of features can even yield better results than complete
evaluation, suggesting that the contribution of the final fea-
tures is essentially noise.
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Figure 5: Average precision vs.recall when evaluation
is stopped after a fixed percentage of features.

As can be seen from Table 2, the reduction is query evalua-
tion time is, as expected, better than linear in the percentage
of features evaluated. Evaluating 80% of the features, for
instance, takes only 61% as long as full evaluation, and the
results are at least as good. It is clear that this is an effective

20% 0.08s
50% 0.20s
80% 0.43s
90% 0.59s

100% 0.71s

Table 2: Average evaluation times for varying percent-
ages of features evaluated.

search pruning method. These values are within the “uninter-
rupted flow of thought” target described in the Introduction.
Better knowledge of individual feature significance might al-
low further improvement.

FIXED TIME RESPONSES
In some situations it may be desirable to allow the user to
specify the maximum time which the system is permitted to
spend on query evaluation, or to set this as an internal pa-
rameter according to the usability criteria discussed in the
Introduction. Figure 6 shows the effect of several fixed time
limits on average precisionvs.recall. It can be seen that none
of the limits causes a significant reduction in precision. The
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Figure 6: Precision vs. recall when evaluation is
stopped after a fixed time.

performance with the 0.5s limit is indistinguishable from the
unlimited case. These results are for single image queries,
with the average execution times given in Table 2. Worse
performance might be expected for multi-image queries with
larger numbers of features.

CONCLUSION
We have shown that the use of an inverted file data struc-
ture leads naturally to effective search pruning strategies for
CBIR. Weights are assigned to features, which are then eval-
uated in sorted order. Such a simple linear pruning strategy is
impossible when access is image by image. We have shown
that a “lossy” pruning strategy does not lead to significantly
impaired system performance. Indeed, it can even improve
performance when the contribution of very numerous fea-
tures with low weights is essentially noise.

This pruning technique leads to system response faster than
the key 1s usability criterion, and approaching the 0.1s “in-
stant response” target. It also leads to graceful degradation
of system performance as evaluation time is reduced. This
will allow the user to specify an upper bound for evaluation
time, thus selecting the desired trade-off between response
time and the quality of query results.
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